
Technique Description Tactics

Abuse
Elevation
Control
Mechanisms

Adversaries may abuse mechanisms designed to elevate
privileges such as SETUID and SETGID, sudo, or file
capabilities to gain or persist privileged access to a system.
Privileged access can be gained by exploiting weaknesses in
the elevation control mechanism. Attackers who obtained
privileged access can persist it through Elevation Control
Mechanisms. For example, they could plant a malicious
SETUID binary or edit the sudoers file.

Privilege
Escalation,
Persistence

Access the
Kubelet Main
API

Adversaries may access the kubelet's main API to gather
information on cluster resources or execute commands on
running pods. The kubelet exposes a server, normally at port
10250, that can be used to execute commands in running pods,
and could be configured to allow anonymous access. An
adversary with network access and appropriate credentials to a
properly configured kubelet, or a misconfigured kubelet, may
access the kubelet API to move laterally and execute code in
pods managed by the kubelet, or gather information on the
pods managed by the kubelet.

Execution,
Lateral
Movement,
Discovery

Access the
Kubernetes API
Server

Adversaries may access the Kubernetes API server to discover,
create, compromise, or delete cluster resources for a variety of
purposes, most notably Discovery, Lateral Movement,
Persistence and Credential Access. The API server is the
gateway to the cluster that exposes the Kuberntes API,
allowing clients to manage the cluster according to their
permissions. Adversaries with sufficient privileges in the cluster
can access the API server to discover cluster resources and
the cluster's version; execute code on existing pods to move
laterally within the cluster; create privileged pods to
compromise their underlying nodes; deploy persistent compute
objects such as ReplicaSets, Deployments and CronJobs to
maintain access to the cluster; set up Admission Controllers to
intercept and possibly mutate new cluster objects; retrieve
Secrets; create users, certificates, service accounts, (cluster)
roles and (cluster) rolebindinges to maintain access to the
cluster; collect or delete logs; or cause a denial-of-service by
deleting existing compute or network resources.

Discovery,
Lateral
Movement,
Persistence,
Credential
Access

Account
Access
Removal

Adversaries may interrupt the availability of system and
network resources by inhibiting access to accounts utilized by
legitimate users. Local accounts, cloud accounts, and
Kubernetes user and service accounts could be deleted,
locked, or manipulated (e.g. changing password or
permissions) to remove access.

Impact



Account
Discovery

Adversaries may attempt to get a listing of local accounts, cloud
accounts, or Kubernetes service accounts. This information can
help adversaries determine which accounts exist to aid in
follow-on behavior.

Discovery

Account
Manipulation

Adversaries may manipulate accounts to maintain access to
victim systems. Account manipulation can consist of any action
that preserves adversary access to a compromised
environment, such as modifying or adding credentials to an
account or changing permissions. In Kubernetes environments,
adversaries can persist access by creating RoleBindings and
ClusterRoleBindings that grant access to an
adversary-controlled service account, user, or group.

Persistence

Application
Exploit (RCE)

Adversaries may attempt to exploit Remote Code Execution
(RCE) vulnerabilities in an application to gain code execution
on the underlying VM or container.

Execution

Cloud Instance
Metadata API

Adversaries may attempt to access the Cloud Instance
Metadata API to collect credentials and other sensitive data.
Most cloud service providers expose a Cloud Instance
Metadata API at http[:]//169.254.169.254 to virtual instances
that provides applications with information about the virtual
instance. This information may include the instance's name,
security groups, OS version, associated credentials, and
startup scripts that could contain secrets. In most managed
Kubernetes offerings, such as GKE, pods can access their
node's metadata API by default.

If adversaries have a presence on a running virtual instance,
they may query the Instance Metadata API to identify
credentials that grant access to additional resources.
Additionally, attackers may exploit Server-Side Request
Forgery (SSRF) vulnerabilities in public facing cloud
applications to gain access to the Instance Metadata API.

Credential
Access
Discovery

CommandAnd
Control/GENE
RAL

The technique refers to different general actions that
adversaries may use to communicate with systems under their
control within a victim network. There are many ways an
adversary can establish command and control with various
levels of stealth depending on the victim's network structure
and defenses.

Command and
Control

Compile After
Delivery

Adversaries may attempt to make payloads difficult to discover
and analyze by delivering files to victims as uncompiled code.
Text-based source code files may subvert analysis and scrutiny
from protections targeting executables/binaries. These
payloads are compiled before execution on the infected
system.

Defense
Evasion



Create Account Adversaries may create an account to maintain access to victim
systems. Accounts could be local accounts, cloud provider
accounts and service accounts, and Kubernetes service
accounts.

Persistence

Create
Container

Adversaries with appropriate permissions may deploy new
containers to the environment to execute their malicious code.
In Kubernetes environments, adversaries could use controllers
such as Deployments, ReplicaSets, CronJobs, or DaemonSets
to create Backdoor Containers that persist in the cluster.

Execution,
Persistence

Credential
Dumping

Adversaries may attempt to dump credentials to obtain account
login and credential material, normally in the form of hashes or
clear text passwords, from the compromised system. On Linux,
/etc/passwd and /etc/shadow store user account information
and password hashes, which can be used for offline password
cracking. Additionally, given root access, adversaries can
abuse the procfs filesystem to scan and harvest credentials
from the memory of all running processes on the system.

Credential
Access

Endpoint
Denial-of-Servi
ce

Adversaries may perform Endpoint Denial of Service (DoS)
attacks to degrade or block the availability of services to users.
An Endpoint DoS blocks the availability of a service without
saturating the network that provides access to the service.
Adversaries can target various layers of the hosting system's
application stack. These layers include the operating systems,
server applications, DNS servers, databases, and the (typically
web-based) applications that sit on top of them. Adversaries
could exhaust resources, abuse bottlenecks, and exploit
persistent crash conditions in a target service, either through a
single request or a flood of requests. In Kubernetes
environments, launching a DoS attack against the API server
can significantly reduce the availability of the cluster.

Impact

Event
Triggered
Execution

Adversaries may establish persistence using system
mechanisms that trigger execution based on specific events.
Shell initialization scripts such as .bash_profile and .bashrc
execute upon execution of a shell process. Adversaries may
plant malicious code in those scripts to persist on a target
machine.

Persistence

Exec Into
Container

Adversaries with appropriate permissions may run malicious
commands in containers with the exec command (“kubectl
exec” and "docker exec").

Execution

Exfiltration Adversaries may steal data by exfiltrating it over the Command
and Control channel or over an alternative, separate channel.
Stolen data may be encoded, encrypted or otherwise
obfuscated.

Exfiltration



Exploit
Public-Facing
Application

Adveseries may attempt to exploit one-day or zero-day
vulnerabilities in a public facing application to gain Initial
Access. If an application is hosted on cloud-based
infrastructure or in a Kuberntes cluster, then exploiting it could
lead to compromise of the underlying instance or pod, which
may have credentials attached.

Initial Access,
Execution

Exploitation for
Privilege
Escalation

Adversaries may exploit software vulnerabilities in an attempt to
elevate privileges. Exploitation of a software vulnerability
occurs when an adversary takes advantage of a programming
error in a program, service, or in the kernel itself, to execute
adversary-controlled code. Security constructs, such as
permission levels, will often hinder access to information and
the use of certain techniques, so adversaries will likely need to
perform privilege escalation through software exploitation to
circumvent those restrictions.

Privilege
Escalation

Exploitation of
Remote
Services

Adversaries may exploit vulnerable remote services to gain
unauthorized access to remote hosts or containers within a
network or cluster. Exploitation of a vulnerability in a remote
service occurs when an adversary takes advantage of a
programming error in a service to execute attacker controlled
code.

Lateral
Movement

File and
Directory
Discovery

Adversaries may enumerate files and directories or search
specific locations for certain information within a file system.
Adversaries could use the information obtained during
automated discovery to shape follow-on behaviors, including
whether or not the adversary fully infects the target and/or
attempts specific actions. Utilities like 'ls' and 'find' can be used
to obtain this information, as well as custom binaries and
scripts.

Discovery

Foreign Binary
Execution

Adversaries may install and run utilities, malware, or third-party
applications to gain custom execution on a target. Foreign
binaries can be brought to a compromised system through
Ingress Tool Transfer or Lateral Tool Transfer.

Execution

Hijack
Execution Flow

Adversaries may execute their own malicious payloads by
hijacking the way a system runs programs. Hijacking execution
flow can be employed for the purpose of persistence, since
hijacked execution can recur over time. Adversaries may also
use these mechanisms to elevate privileges or evade defenses.
There are many ways an adversary could hijack the flow of
execution, including by manipulating how the operating system
locates programs to be executed or libraries to be loaded.
Common techniques include modifying the dynamic linker
configuration (e.g. through /etc/ld.preload), planting malicious
versions of a binary or library under a directory placed early in
the search path, and modifying the binary search path itself.

Persistence,
Defense
Evasion,
Privilege
Escalation



Impair
Defences

Adversaries may maliciously modify components of a victim
environment in order to hinder or disable defensive
mechanisms. This not only involves impairing preventative
defenses, such as firewalls and anti-virus, but also detection
capabilities that defenders use to audit activity and identify
malicious behavior.

Defense
Evasion

Ingress Tool
Transfer

Adversaries may transfer tools or other files from an external
system into a compromised environment. Files could be copied
from an external adversary controlled system through the
command and control channel to bring tools into the victim
network. Alternatively, files could be copied using alternative
protocols, such as FTP or through native tools like scp, rsync,
and sftp.

Command and
Control

Kubernetes
Secrets

A Kubernetes secret is an object that lets users store and
manage sensitive information in the cluster, such as passwords
and connection strings. Adversaries with appropriate
permissions may retrieve secrets from the API server (by using
the pod service account, for example) and access the sensitive
information stored in them.

Credential
Access

Lateral Tool
Transfer

Adversaries could transfer tools or files between systems in a
compromised environment. Files could be copied from one
system to another to stage adversary tools. Adversaries could
copy files laterally between internal victim systems to support
lateral movement using file sharing protocols and native tools,
like scp, rsync, and sftp.

Lateral
Movement

Man-in-the-Mid
dle

Adversaries may attempt to position themselves between two
or more networked devices using a man-in-the-middle (MiTM)
technique to support follow-on activity such as Network Sniffing
or Transmitted Data Manipulation. By abusing common
networking protocol features which control network traffic flow
(e.g. ARP spoofing), adversaries may force a device to
communicate through an adversary-controlled system so they
could collect information and credentials or manipulate
transmitted data.

Collection
Credential
Access

Masquerading Adversaries may attempt to manipulate features of their
artifacts to make them appear legitimate or benign to users
and/or security tools. Masquerading occurs when the name or
location of an object is manipulated for the sake of evading
defenses and observation. This may include manipulating
names and metadata of files, services or cloud instances.
Adversaries may name their malware after commonly used
utilities, or place it under directories used for executables such
as /bin. In Kubernetes, controllers such as Deployments and
DaemonSets attach a random suffix to pods created by them.
Attackers may match this behavior to masquerade malicious
pods as legitimate ones created by a controller.

Defense
Evasion



Native Binary
Execution

Adversaries may use installed binaries, like curl and apt, or
interpreters, such as bash and Python, to gain execution on a
target. Using binaries native to an environment can help
conceal the attack from defenders.

Execution

Network
Service
Scanning

Adversaries may attempt to get a listing of services running on
remote hosts and pods, including those that may be vulnerable
to remote software exploitation. Methods to acquire this
information include port scanning and vulnerability scanning
with tools brought onto a system.

By default, Kubernetes doesn't restrict pod communications,
meaning an attacker with access to a Kubernetes pod can
discover and map other pods on the cluster.

Discovery

Obfuscated
Files

Adversaries may attempt to make an executable or file difficult
to discover or analyze by encrypting, encoding, compressing,
padding, or otherwise obfuscating its contents on the system or
in transit. Adversaries may strip file identifiers such as ELF
headers from payloads to make them harder to identify and
analyze.

Defense
Evasion

Privileged
Container

Adversaries who gain access to a privileged container or can
create a privileged container may use its elevated privileges to
compromise the underlying host. A privileged container isn't
necessarily one that runs with the infamous privileged flag. It
can be any container configured with elevated privileges, such
as additional kernel capabilities, shared host namespace,
exposed devices, or lack of cgroups isolation, that allow it to
compromise the underlying host.

Privilege
Escalation

Query the
Kubelet
Readonly API

Adversaries may query the kubelet's read-only API to discover
the configuration of the kubelet's node and the pods running on
it. By default, the kubelet exposes a read-only API at port
10255 that doesn't enforce authentication. An adversary with
network access to a node can query the kubelet's read-only API
to retrieve the configuration of all pods running on the kubelet's
node, as well as node information and metrics. A pod's
configuration may include sensitive information, such as the
containers' image, environment variables, and command.

Discovery

Resource
Hijacking

Adversaries may leverage the resources of compromised hosts
and containers in order to solve resource intensive problems
which may impact system and service availability. One common
purpose of Resource Hijacking is to earn virtual currency
through cryptomining.

Impact

Scheduled
Task/Job

Adversaries may abuse task scheduling functionality to
facilitate initial or recurring execution of malicious code. Utilities
such as systemd timers, at, and cron could be abused.

Execution,
Persistence



Software
Deployment
Tools

Adversaries may gain access to software deployment tools and
administrative tools, such as the Docker daemon, the
Kubernetes API Server, the Kubernetes Dashboard, and the
Helm v1 Tiller, to move laterally within an environment. Abusing
software deployment tools could enable adversaries to gain
remote code execution on all entities connected to the system
by deploying payloads in the form of binaries, services, or
containers.

The permissions required for this action vary by system
configuration. If the deployment or administrative tools are
misconfigured, they might allow unauthenticated access,
meaning any adversary with network access to the tool could
control it.

Lateral
Movement

Software
Discovery

Adversaries may attempt to get a listing of software and
software versions that are installed on a local or remote
system. Adversaries could use the information from Software
Discovery during automated discovery to shape follow-on
behaviors, including whether or not the adversary attacks the
target and/or attempts specific actions.

Adversaries may attempt to enumerate software for a variety of
reasons, such as determining what security measures are
present or if the compromised system has a version of software
that is vulnerable to Exploitation for Privilege Escalation.

Discovery

Supply Chain
Compromise

Adversaries may manipulate software, software dependencies,
deployment artifacts, or infastracture-as-code files prior to
receipt by a final consumer to gain Initial Access to a system.
Adversaries may plant malware in binaries, libraries, container
images, Kubernetes YAML files, and Helm charts.

Initial Access

System
Information
Discovery

An adversary may attempt to get detailed information about the
operating system and hardware, including version, patches,
hotfixes, service packs, and architecture through utilities such
as uname and special files like lsb-release or /boot/config.
Adversaries may use this information to shape follow-on
behaviors, such as exploitation of one-day vulnerabilities in
unpatched operating systems.

Discovery

System
Network
Configuration
Discovery

Adversaries may attempt to get the network properties of a
system to formulate follow-on behaviour. Adversaries can use
tools, such as 'ifconfig' and 'ip'. They may also query the
operating system directly, for example, by reading procfs files,
such as /proc/net/route.

Discovery

System
Network
Connections
Discovery

Adversaries may attempt to get a listing of network connections
of the compromised system they are currently accessing, or of
remote systems by querying for information over the network.
In Linux, the netstat, lsof and ss utilities can be used to list

Discovery



current connections.

System
Owner/User
Discovery

Adversaries may attempt to identify the primary user, currently
logged in user, set of users that commonly uses a system, or
whether a user is actively using the system. They may do this,
for example, by retrieving account usernames or by using OS
Credential Dumping. The information may be collected in a
number of different ways using other Discovery techniques,
because user and username details are prevalent throughout a
system and include running process ownership, file/directory
ownership, session information, and system logs. Adversaries
may use the information from System Owner/User Discovery
during automated discovery to shape follow-on behaviors,
including whether or not the adversary fully infects the target
and/or attempts specific actions.

In Linux, the whoami utility can retrieve the currently logged in
user, and w and who utilities can list all currently logged in
users.

Discovery

Unsecured
Credentials

Adversaries may search compromised environments for
insecurely stored credentials. These credentials can be stored
and/or misplaced in many locations, including local files, such
as bash history, private keys, Kubernetes YAML files, source
code repositories, artifacts, such as container and VM images,
and in environment variables of containers and VMs.

Credential
Access

Web Shell Adversaries may backdoor web servers with web shells to
establish persistent access to systems. A web shell is a web
script that is placed on an openly accessible web server to
allow an adversary to use the web server as a gateway into a
network. A web shell can provide a set of functions to execute
or a command-line interface on the system that hosts the web
server.

Persistence


