
Twistlock Reference 
Architecture 19.07



www.twistlock.com

Contents

2

Reference Architecture Objectives
Solution Overview
Twistlock Host, Container, Virtual Machine, and 
Serverless Function Support

Twistlock Platform Components
Twistlock Console
Twistlock Defender
Twistlock Intelligence Stream
The twistcli Tool
Twistlock Connectivity Flows
High Availability

Operational Concerns
System Requirements
Monitoring
Backup

Supported Schedulers and 
Deployment Patterns
Twistlock on Kubernetes
Twistlock on Amazon EKS
Twistlock on Amazon ECS
Twistlock on OpenShift
Twistlock on DC/OS
Twistlock on Swarm
Twistlock on PCF: PAS and PKS
Automating Twistlock Installs for Other 
Environments

3
3
3

4
4
4
5
7
8
9

10
10
10
10

11

12
13
13
15
16
17
18
18

19

20
20
21
21

22

23
23
23

24
24
25

26

26
27
27
27

Cloud Discovery and Service 
Account Monitoring

Multitenancy and Scale
Multitenancy — Tenant Projects
Scale — Scale Projects
Configuration of Projects

Role Based Access Control (RBAC)

Integration with the CI Pipeline
Overview
Twistlock Integration with Single Node Jenkins or 
Other CI Server
Twistlock Jenkins Plugin
Twistlock Integration with Other CI Servers
Twistlock Registry and Serverless Repository 
Scanning

Container Secrets

Retrieving Data from Twistlock
Event Driven Messaging
Log Files
API Calls

http://twistlock.com


Reference Architecture 19.07

3www.twistlock.com

Reference Architecture Objectives
The Twistlock Reference Architecture provides guidance to Enterprise and Security 
Architects on how to deploy Twistlock and integrate with systems commonly found in 
the enterprise stack and across the elements of their cloud workloads.

Solution Overview
Twistlock protects your cloud native assets anywhere they operate—whether you’re 
running containers, serverless functions, non-container hosts, or any combination of 
them. Advanced threat intelligence and machine learning enable protection of your 
entire cloud native stack, whether it runs in the public cloud, private cloud, or air-
gapped environment.

Twistlock provides an agentless architecture that requires no changes to your host, 
container engine, or applications. Twistlock is deployed as a set of containers, as a 
service on your hosts, or as a runtime component of your serverless function. For 
environments that do not support deployment of Twistlock as a privileged peer, we 
offer runtime application self protection (RASP) capabilities. 

Upon deployment, Twistlock immediately begins working to secure your container 
and cloud environment. Twistlock supports discovery of assets within your cloud 
environment, allowing you to easily identify assets which are not protected and add 
them.

Twistlock is easily integrated into your container build process with support for 
continuous integration (CI) systems and registry/serverless repository scanning 
capabilities.

Twistlock Host, Container, Virtual Machine, and Serverless 
Function Support
Twistlock supports the full stack and lifecycle of your cloud native workloads. With 
Twistlock, you can protect mixed workload environments. Whether you’re running 
standalone hosts, containers, serverless functions, or any combination of the above, 
Twistlock allows you to manage your environment with a single interface across the 
entirety of the lifecycle — from development to runtime.

Twistlock protects the hosts you’re working with, whether you are using a Linux 
variant or using Windows Server 2019, and the applications they run. 

Twistlock can also protect your serverless functions and applications on AWS Fargate. 
As you look to move beyond using containers and identify workloads that can be run 
as functions, Twistlock can protect and report on these functions alongside your other 
workloads regardless of cloud service provider. Finally, Twistlock supports the Docker 
and OCI compatible container runtimes, as well as any functions you may run across 
any platform.

http://twistlock.com


Reference Architecture 19.07

4www.twistlock.com

Twistlock Platform Components
Twistlock Console
Twistlock Console serves as the user interface within Twistlock. The graphical 
user interface (GUI) lets you define policy, configure and control your Twistlock 
deployment, and view the overall health (from a security perspective) of your 
container environment. Console also provides an API for customers that want to 
control Twistlock programmatically to build out their own integrations or custom 
tooling. The API is thoroughly documented. Endpoints are provided for all features, 
functions, and controls offered in the GUI.

Regardless of how Console is installed and where it operates, Console requires access 
to persistent storage. Console can be deployed using either your orchestrator’s native 
HA capabilities or Twistlock’s built-in high availability (HA) capabilities.

When installing Twistlock, install Console first, then install Defender. Defender is 
the component of Twistlock that runs on each host, more detail is provided below. 
Defender can be installed from the deployment tabs in Console’s graphical user 
interface. Defender, as the initiator of the connection, requires network connectivity 
to the Console.

Twistlock provides automation in the product that generates the required artifacts 
for common orchestration platforms such as Kubernetes, OpenShift and Swarm. 
Twistlock can also generate Helm charts to ease deployment for organizations who 
have adopted Helm as their packaging standard.

Graphical Interface
Console’s graphical user interface can be accessed using a web browser on ports 
8081 (HTTP) or 8083 (HTTPS). We recommend that you access Console over HTTPS 
so that sensitive information, such as admin passwords, is encrypted while in transit. 
By default, self-signed certificates are used to secure access to Console but you can 
configure your own certificate to prove your server’s identity to browser clients. For 
more information on this topic, see our support article here.

API
The Twistlock API is REST-based and can be accessed over HTTP or HTTPS on ports 
8081 and 8083 respectively. For more information about the Twistlock API, see the 
support article here.

http://twistlock.com
https://docs.twistlock.com/docs/latest/access_control/use_custom_certs_for_auth.html
https://docs.twistlock.com/docs/latest/api/api_reference.html


Reference Architecture 19.07

5www.twistlock.com

Twistlock Defender
Twistlock Defenders enforce the policies defined in Console and send event data up 
to the Console for correlation. There are several types of Defenders, and depending 
on the assets in your environment that require protection you may end up deploying 
all of them or a subset. Defenders support the full variety of workloads in cloud native 
environments: 

 ■ Container Defender: This Defender type is deployed as a container on every 
asset running containers in your infrastructure.

 ■ Host Defender: This Defender type is deployed for Virtual Machines that do 
not run containers.

 ■ Fargate Defender: This Defender type deploys as part of your Fargate 
deployment. 

 ■ Serverless Defender: This Defender type deploys as part of your serverless 
function.

The Defender can be installed one of the following ways:

 ■ One at a time, on each host that you want to protect. Use this method when 
you’re not using an orchestrator, or for simple proof-of-concept environments. 
You can also install Defenders via whatever configuration management or 
automation tools you are already using, Ansible, Puppet, or Chef for example.

 ■ As a orchestrator-native construct. For example, you can deploy Defender as a 
DaemonSet in Kubernetes and OpenShift environments or as a global service 
in Docker Swarm environments. Orchestrator-native constructs ensure that 
Defender is automatically deployed to every node in the cluster, even as the 
cluster dynamically scales up or down.

 ■ As a systemd service on hosts that do not have Docker.

 ■ As a windows system service on hosts that do not have Docker.

 ■ As a part of your Fargate deployment or Serverless function deployment.

http://twistlock.com


Reference Architecture 19.07

6www.twistlock.com

By default, Defender establishes a connection to Console on TCP port 8084 but you 
can customize the port to meet the needs of your environment. All traffic between 
the Defender and the console is TLS encrypted.

To use Twistlock registry scanning capabilities, different container Defenders in your 
environment can be designated to scan each registry, allowing you to balance registry 
scanning based on geographic or other concerns; container based Defenders can 
simultaneously protect its host and scan registry images. These Defenders must be 
able to connect to the registries over the network, and the type (Linux or Windows) 
must match the kind of images you want it to scan. If you have a hybrid Linux and 
Windows environment, one Defender of each type must be running.

As with Console, Twistlock provides automation in the product to generate the 
artifacts required to deploy Defender across a variety of environments. 

Twistlock Intelligence Stream
The Twistlock Intelligence Stream is a real-time threat feed delivered from the 
Twistlock content delivery network (CDN) to our customers’ installations. This service 
gathers, analyzes, and prepares threat data for distribution to the Console located 
on your network. Console pulls data down from the Threat Intelligence Stream 
using HTTPS requests. The Intelligence Stream is Console’s only required external 
dependency.

Note: No customer data ever leaves your network or environment. Twistlock does not 
gather data from our customers unless you choose to opt in and contribute.

If you operate in an air-gapped environment, data in the Intelligence Stream can 
be downloaded and transferred to Console using the twistcli tool we ship with the 
product using whatever operational processes you wish to put in place.

http://twistlock.com


Reference Architecture 19.07

7www.twistlock.com

The twistcli Tool
The twistcli tool is a command-line control and configuration tool. It ships with 
your Twistlock release and can be found in the Twistlock release tarball. Support is 
provided for both Linux and MacOS.

The twistcli tool provides a number of functions:

 ■ Scanning images for vulnerabilities and compliance issues. This is useful 
when you’re building custom tooling, or when you’re using a CI tool for which 
Twistlock does not provide a native plugin.

 ■ Deploying (installing and uninstalling) Console and Defender across all 
environments.

 ■ Downloading the latest threat data from the Intelligence Stream for transfer to 
an air-gapped environment.

 ■ Packaging log files and other relevant data from your environment and 
optionally uploading that data so that Twistlock Support can help debug issues.

 ■ Interacting with Serverless and Fargate artifacts to automatically produce the 
artifacts necessary to run workloads in Serverless or Fargate.

For more information about twistcli, see the support article here.

Authenticated Registry
For our customers, Twistlock hosts the images required for deployment of Twistlock in 
a secured and highly available container registry they can leverage to automate their 
deployments. Use of this registry is not required and is provided as a convenience to 
our customers.

http://twistlock.com
https://docs.twistlock.com/docs/latest/tools/twistcli.html


Reference Architecture 19.07

8www.twistlock.com

Twistlock Connectivity Flows
In order to operate, Twistlock requires a number of connections between 
components. The following diagram shows the ports and connections required. 
To fit the needs of various customer environments and deployments, all ports 
are configurable at install time (for more information, see the inline comments in 
twistlock.cfg).

Firewalls 
Customers typically place Console in a management security zone or other segregated 
part of their network. Some customers might also want to place a firewall between 
Console and Defender. Twistlock can interoperate with firewalls wherever necessary, 
provided the required TCP ports are open.

TWISTLOCK
INTELLIGENCE STREAM

HOST
PHYSICAL/VIRTUAL

TWISTLOCK
CONSOLE

DOCKER DAEMON

HOST
PHYSICAL/VIRTUAL

DOCKER DAEMON

FIREWALL

TCP: 8084

TWISTLOCK
ADMINISTRATOR

CI INTEGRATION

TWISTLOCK
DEFENDER

CONTAINER
REGISTRY

TCP: 8081, 8083TCP: 8083

TCP: 5000

TCP: 443TCP: 8081, 8083

TCP: 8081TCP: 8084

SERVERLESS
DEFENDER

FARGATE
DEFENDER

http://twistlock.com


Reference Architecture 19.07

9www.twistlock.com

Istio
When Defender DaemonSets are deployed with Istio monitoring enabled, Twistlock 
can discover the service mesh and show you the RBAC capabilities for each service 
(e.g. this pod can read service X using REST/grpc on the following endpoints). Services 
integrated with Istio display the Istio logo.

Load Balancers
A common configuration involves placing a load balancer in front of Console for 
access to the GUI and the API. Twistlock can interoperate with traditional hardware 
or software load balancers, as well as load balancers from all major cloud service 
providers. 

High Availability
Console can be deployed in an HA configuration using either your orchestrator’s HA 
capabilities or Twistlock built-in HA capability. Twistlock built-in HA capability are 
provided for customers that want to run Console on hosts that are not under the 
control of a cluster manager. 

In general, we recommend that you use your orchestrator’s native availability 
features. If you are using an orchestrator for HA, do not enable Console’s built-in HA 
capabilities.

When you deploy Console on multiple hosts, Twistlock built-in HA ensures that one 
Console is always available, even if a host fails. Twistlock HA creates a high availability 
clusters from redundant hosts running Console in an active-passive configuration, and 
automatically manages cluster membership, leader election, and failover.

To learn about Twistlock’s built-in HA capabilities for Console, see here.

http://twistlock.com
https://docs.twistlock.com/docs/latest/configure/high_availability.html


Reference Architecture 19.07

10www.twistlock.com

Operational Concerns
System Requirements
Before deploying Twistlock Console, Defenders, and registry scanners, be sure that 
your hosts meet the minimum requirements detailed here.

Monitoring
Twistlock provides API endpoints to monitor the health and availability of deployed 
components.

We recommend you monitor the following aspects of your Twistlock installation:

Console Service Availability:
Monitor the Twistlock API and ensure the ping API returns “200 ok”

 ■ API endpoint: GET /api/v1/_ping

 ■ Example command: curl -u admin:Password ‘https:<console-ip>:8083/api/
v1/_ping

Intelligence Stream Connectivity:
The Intelligence Stream is used to pull down threat and CVE data. From the Console 
or host, monitor the following:

 ■ https://intelligence.twistlock.com/api/v1/_ping

Disk Space:

Console writes files to disk both database and logging. We recommend customers 
monitor the health and space available on the volume that contains /var/lib/twistlock. 
Typical customers with normal usage should raise an alert when 10 GB or less of disk 
space is available on the volume. This location can be modified in twistlock.cfg at 
install time.

Both Console and Defender containers are configured with Docker Health Check, a 
best practice, which gives you insight into the containers’ health.

Backup
Twistlock includes full backup and restore functionality in the Console. Twistlock 
automatically backs up on a Daily, Weekly, and Monthly cadence.

http://twistlock.com
https://docs.twistlock.com/docs/latest/install/system_requirements.html


Reference Architecture 19.07

11www.twistlock.com

Supported Schedulers and Deployment Patterns
You can either download and manage all Twistlock container images by yourself or 
you can access them from our hosted registry.

When you download our software from the Releases page, you get a tarball that can 
be used to install Twistlock. You can also pull the images from the Twistlock Registry, 
for more information please refer to the documentation. 

You can push the Twistlock images to your own private registry, and manage them 
as you see fit. The Console image is delivered as a .tar.gz file in the release tarball. 
After Console is installed, the Defender image is accessible from the dashboard under 
Manage > Defenders > Deploy, where deployment scripts retrieve the Defender 
image from Console using the /api/v1/images/twistlock_defender.tar.gz API endpoint.

You can also retrieve Twistlock images from our hosted registry, which is available 
to all current customers with a valid access token. This option simplifies a lot of 
workflows, especially the initial install flow.

http://twistlock.com
https://docs.twistlock.com/docs/latest/download/releases.html
https://docs.twistlock.com/docs/latest/install/twistlock_container_images.html


Reference Architecture 19.07

12www.twistlock.com

Before installing Twistlock Console 
as a pod, your Kubernetes cluster 
should be built out and persistent 
storage should be provisioned and 
formatted. As part of the install 
process, you’ll need to update 
twistlock.cfg with the specifics 
of your environment. Complete 
instructions can be found on 
the Twistlock Support Site here. 
We recommend that you use a 
namespace other than “twistlock” 
when deploying Console.

Notes on Installing Defender 
as a DaemonSet
When installing the Twistlock 
Defender as a DaemonSet, we 
recommend you use the twistcli 
to generate a daemonset.yaml 
as described on the Support Site 
here.

Twistlock on Amazon 
EKS

Twistlock on Kubernetes
Twistlock supports deploying Console and Defenders into Kubernetes clusters.

The Twistlock Console is installed as a replication controller with persistent storage, 
allowing the Console to be resilient to node failures.

Defenders are deployed to Kubernetes nodes using DaemonSets. DaemonSets 
make Defender deployment simple and automatic, regardless of how large your 
cluster or how frequently you add nodes to it. With DaemonSets, rather than 
manually installing Twistlock Defenders on each node, Twistlock generates a 
configuration file that you load into your Kubernetes Master. Kubernetes uses 
the configuration to ensure that every node in the cluster runs a Defender. As 
new nodes are added, Defenders are automatically installed on them. Deploying 
Defenders with DaemonSets guarantees that every node in your environment is 
protected, without having to manually intervene when node membership changes.

The diagram below illustrates a basic Twistlock deployment on Kubernetes:

Notes on Installing Console

TWISTLOCK
INTELLIGENCE STREAM

PERSISTENT STORAGE
READ / WRITE

TWISTLOCK
CONSOLE

REPLICATION CONTROLLER

KUBERNETES
DAEMONSET

TWISTLOCK
DEFENDER

KUBERNETES POD

CONTAINER
REGISTRY

TWISTLOCK
DEFENDER

TWISTLOCK

INGRESS CONTROLLER

ADMINISTRATOR

TCP: 8081, 8083 TCP: 443

TCP: 5000

TCP: 8084

TCP: 8084

TCP: 8081, 8083

http://twistlock.com
https://docs.twistlock.com/docs/latest/install/install_kubernetes.html#overview
https://docs.twistlock.com/docs/latest/install/deploy_defender_daemon_set_api.html#deploying-defender
https://kubernetes.io/docs/admin/daemons/


Reference Architecture 19.07

13www.twistlock.com

You can install Twistlock Console as a ReplicationController and Defenders as a 
DaemonSet in EKS. More details on this configuration can be found in our Support 
Site here.

Twistlock on Amazon ECS
Twistlock supports deploying Console and Defenders into an ECS cluster.

In an ECS cluster deployment, Console is deployed directly using a task definition. 
The Twistlock Console requires persistent storage to store its data. ECS does not 
have a way to dynamically attach storage to a node that is running a particular task, 
so deploying Console requires attaching an EFS mount to each node in the cluster. 
Console runs on a single node at a time, and ECS can schedule it to run on any 
available node, so a shared data store is recommended. 

Defenders are not deployed as tasks due to a few limitations in the parameters 
available to define ECS tasks. Ideally, you want a Defender to run on each node in 
your cluster. In order to accomplish this, you deploy Defenders as part of an AWS 
launch configuration that is used by the ECS cluster to provision new nodes. In 
the launch configuration, you define a user data script that calls our API to install 
Defender.

Due to Host PID limitations imposed by Amazon, ECS Daemon Scheduling is not 
currently supported.

The final piece is to set up an ELB to forward traffic to the Console node and give 
the Defenders a static endpoint they can connect to. This should be configured as 
a standard ELB with TCP forwarding for port 8084. Additionally you will want to set 
up a health check so the ELB knows where to forward traffic. Because this is a TCP 
forward, there is no health check that can be performed on the websocket so we will 
configure a health check to call our HTTPS API endpoint and ping /api/v1/_ping. Only 
the node that is running the Console will be respond to the health check and the ELB 
will forward all traffic to the console node.

The diagram below illustrates the layers each component runs in and how a new node 

http://twistlock.com
https://docs.twistlock.com/docs/latest/install/install_amazon_ecs.html


Reference Architecture 19.07

14www.twistlock.com

ECS NODE:
CONSOLE AS TASK

DOCKER:
DEFENDER
DEPLOYED

EFS - 1

TWISTLOCK
CONSOLE

ECS NODE:
NO T/L TASKS

DOCKER:
DEFENDER
DEPLOYED

EFS - 1

CALL
API

DEPLOY NEW NODE

LAUNCH CONFIGURATION

NEW NODE

EFS - 1

ECS CLUSTER

is provisioned with a Defender:

http://twistlock.com


Reference Architecture 19.07

15www.twistlock.com

Twistlock on OpenShift
Twistlock supports deploying Console and Defenders into an OpenShift cluster.

OpenShift makes Defender deployment simple and automatic, regardless of how 
large your cluster is or how frequently you add nodes to it. With DaemonSet 
pods, rather than installing Twistlock Defenders on each node individually, 
Twistlock generates a configuration file that you load into your OpenShift master. 
OpenShift uses this configuration to ensures that every node in the cluster 
runs a Defender. As new nodes are added, Defenders are installed on them 
as well. Deploying Defenders with DaemonSets guarantees that every node 
in your environment is protected, without having to manually intervene when 
membership changes.

The diagram below illustrates a basic Twistlock deployment on OpenShift:

Notes on Console as a 
Replication Controller
Before deploying Twistlock 
Console to a Replication 
Controller, configure and format 
your persistent storage. Note the 
hostpath and labels used when 
defining the persistent storage 
YAML file. Both these values are 
required when using twistcli and 
twistlock.cfg to generate the 
Console YAML file.

If you are installing the Twistlock 
Console and Defender into 
different namespaces, specify 
Services and Routes for TCP ports 
8081, 8083, and 8084 between 
Console and DaemonSet pods.

http://twistlock.com


Reference Architecture 19.07

16www.twistlock.com

Twistlock on DC/OS
Twistlock supports deploying Console and Defender to a DC/OS or Mesos 
environment, using either the Marathon or Kubernetes scheduler. Twistlock 
recommends Kubernetes, please refer to the section on Kubernetes in this 
document. 

The deployments for all environments are essentially the same. Console runs as 
a standard Docker container on one of your hosts, and a Defender instance runs 
on each agent node.

Before installation, load the Console and Defenders images, tag them, and then 
push them to a registry that can be accessed during the deployment.

The diagram below illustrates a basic Twistlock deployment on DC/OS:

Notes on Installing Console
We recommend that you create 
network mountable durable 
storage for Console’s data. Mount 
this storage on any host that 
might run Console. This way, 
Console has access to its data no 
matter where it is deployed. We 
recommended that you use /var/
lib/twistlock as the mount point 
on the host.

Notes on Installing Defender
Twistlock Defenders are 
deployed to each agent node 
using Marathon’s application 
construct. Marathon applications 
are defined in JSON. Before 
loading the Defender application, 
update Defender image with the 
certificates it needs to securely 
communicate with Console. 
To do this, load the Defender 
image, open an interactive shell 
to a running instance of the 
Defender image, install curl into 
the container, then create and 
populate the directory that holds 
the certs. For complete details, see 
the support article here.

 
 

 
 
 
 
 

TWISTLOCK
DEFENDER
(1 INSTANCE

AGENT NODE)

MESOS AGENT PROCESS
—

MESOS CONTAINERIZER
DOCKER ENGINE

TWISTLOCK
CONSOLE

(1 INSTANCE)

PUBLIC INTERNET

DC/OS PUBLIC AGENT (O..n) DC/OS PUBLIC AGENT (O..n)

MESOS AGENT PROCESS
—

MESOS CONTAINERIZER
DOCKER ENGINE

DC/OS MASTER (1..3)

ZOOKEEPER MESOS DNS
ADMIN
ROUTER

DC/OS
MARATHON

MESOS MASTER
PROCESS

http://twistlock.com
https://docs.twistlock.com/docs/latest/install/install_dcos.html


Reference Architecture 19.07

17www.twistlock.com

Twistlock on Swarm
Twistlock supports installation on Docker Swarm using Swarm-native features. 
You deploy Console as a service with the number of replicas limited to 1 and rely 
on Swarm to provide built-in high availability. You also deploy Defender as a global 
service. The global service guarantees that Defender is automatically deployed to 
each worker node in the cluster.

The diagram below illustrates a basic Twistlock deployment on Docker Swarm:

Notes on Deploying Console in 
Swarm
You’ll use the twistcli tool provided 
in the install package to install 
Console, which will push the 
console image to your registry. 
Console uses Swarm’s routing 
mesh networking, so the Console 
service is available on the target 
port on every node. More detail on 
installing Console in Swarm can be 
found here.

http://twistlock.com
https://docs.twistlock.com/docs/latest/install/install_swarm.html


Reference Architecture 19.07

18www.twistlock.com

Twistlock on Pivotal Cloud Foundry: PAS and PKS
Twistlock can be used to secure applications on both Pivotal Application Service (PAS) 
and Pivotal Container Service (PKS).

Twistlock on Pivotal Application Service (PAS)
The PCF Defender is delivered as a tile. Initially, Twistlock supports scanning droplets 
and blobstores. To use Twistlock on PAS, go to the PCF Ops Manager Installation 
Dashboard to install the tile.

For more complete details, see the support article on PAS here.

Twistlock on Pivotal Container Service (PKS)
PKS provides on-demand deployment of Kubernetes clusters with the command line 
(CLI) and API using BOSH. Twistlock supports the deployment of both Console and 
Defender containers on your PKS nodes.

For more complete details, see the support article on PKS here.

Automating Twistlock Installs for Other Environments
To enable deployment across environments we host our Twistlock images in a 
repository designed for reliability and availability. This repository is accessible using 
your Access Token supplied as part of your license. More information on accessing our 
hosted registry is available here.

Details on deployment will vary according to the environment but the high level steps 
are much like the other deployments above.

The Console image can be pulled from Twistlock. It can be started on your platform 
with persistent storage, appropriate network connectivity and configured using the 
Web UI.

Defender deployments will vary but as the Defender is usually pulled from the 
Console it’s as simple as calling the API. Detailed instructions can be found here.

http://twistlock.com
https://docs.twistlock.com/docs/latest/vulnerability_management/pcf_blobstore.html#overview
https://docs.twistlock.com/docs/latest/install/install_pks.html#overview
https://docs.twistlock.com/docs/latest/install/twistlock_container_images.html
https://docs.twistlock.com/docs/latest/install/install_defender.html


Reference Architecture 19.07

19www.twistlock.com

Cloud Discovery and Service Account Monitoring
As cloud platforms continue to add new services, it’s becoming more difficult and 
impractical to ensure the apps running on them are protected. Consider that you 
might be using multiple cloud platforms, and that you have many separate accounts 
per platform, such as different accounts per business unit or geography. You could 
easily have hundreds of combinations of providers, accounts, and regions where cloud 
native services are deployed.

Cloud Platform Compliance helps you centrally discover all the cloud-native services 
used in AWS, Azure, and Google Cloud, across all regions and accounts. Cloud 
Provider Compliance continuously monitors these accounts, detects when new 
services are added, and reports which services are unprotected. It can help you 
mitigate risks introduced by rogue deployments, abandoned environments, and 
environments not protected by Twistlock.

Kubernetes has a rich RBAC model based around the notion of service and cluster 
roles. This model is fundamental to the secure operation of the entire cluster because 
these roles control access to resources and services within namespaces and across 
the cluster. While these service accounts can be manually inspected with kubectl, this 
manual approach can be difficult to visualize and understand service account scope at 
scale.

Twistlock Radar provides a discovery and monitoring tool for service accounts. Every 
service account associated with a resource in a cluster can easily be inspected. For 
each account, Twistlock shows detailed metadata describing the resources it has 
access to and the level of access it has to each of them. This visualization makes it 
easy for security staff to understand role configuration, assess the level of access 
provided to each service account, and mitigate risks associated with overly broad 
permissions.

http://twistlock.com


Reference Architecture 19.07

20www.twistlock.com

Multitenancy and Scale Projects
Twistlock supports multitenancy and unlimited scale. We accomplish this with 
our Projects capabilities. Twistlock support two types of Projects: Tenant projects 
and Scale projects. For more information refer to the guide below or access our 
documentation on the feature here. 

TENANT
PROJECT

TENANT
PROJECT

TENANT
PROJECT

SCALE
PROJECT

SCALE
PROJECT

CENTRAL CONSOLE
INHERITED RULES

INFINITE SCALE

SCALE
PROJECT

CENTRAL
CONSOLE

UP TO 1K
DEFENDERS

TENANT/SCALE?

UP TO 1K
DEFENDERS

UP TO 1K
DEFENDERS

SUPERVISOR

UP TO 1K
DEFENDERS

SUPERVISOR

UP TO 1K
DEFENDERS

SUPERVISOR SUPERVISOR

UP TO 1K
DEFENDERS

SUPERVISOR

UP TO 1K
DEFENDERS

SUPERVISOR

TCP: 8083

Multitenancy — Tenant Projects
The Central Console has full visibility into the entire estate. You can then setup tenant 
projects which act as a self contained Console and Defender setup. Users can only see 
and administer their subsection of the estate.

Tenant projects are like silos. They each have their own rules and settings that are 
created and maintained separately from all other projects.

This is represented in the left hand side of the above diagram.

http://twistlock.com
https://docs.twistlock.com/docs/latest/deployment_patterns/projects.html


Reference Architecture 19.07

21www.twistlock.com

Scale — Scale Projects
Each Console can support 1,000 Defenders. By utilizing Scale Projects, we can 
allocate Consoles to a Central Console. This enables an unlimited number of 
Defenders.

Defenders communicate to the scale project Console (1,000 Defenders per scale 
project Console) and the scale project Console aggregates and sends to a Central 
Console.

Policies and rules are inherited by the scale project from the Central Console. Users 
and administrators operate the Central Console which then pushes changes to the 
scale projects.

Configuration of Projects
Detailed setup instructions can be found here, In essence, you deploy the Console 
you want to become the Central Console and connect that to another Console via the 
User Interface. Twistlock will then configure it appropriately.

CONSOLE 1
(CENTER CONSOLE)

PROXY TO
CONSOLE 2

VIEW & ADMINISTER
CONSOLE 2

CONSOLE 2
(SUPERVISOR)

TWISTLOCK
DEFENDER

TCP: 8083

By default, the master and its supervisor Consoles communicate over port 8083. You 
can configure a different port by setting MANAGEMENT_PORT_HTTPS in twistlock.
cfg at install time. All Consoles must use the same value for MANAGEMENT_PORT_
HTTPS.

http://twistlock.com
https://docs.twistlock.com/docs/latest/deployment_patterns/projects.html


Reference Architecture 19.07

22www.twistlock.com

Role Based Access Control (RBAC)
The Twistlock Console can be accessed via the graphical user interface and the 
application programming interface (API). 

The Twistlock Console supports the following authentication methods:

 ■ Username / Password

 ■ Lightweight Directory Access Protocol (LDAP)

 ■ Security Assertion Markup Language v2.0 (SAML2.0) 

 ■ X.509 smart cards

Twistlock can apply password complexity rules for user accounts created within 
Twistlock. For the authentication of external identities, Twistlock supports LDAP 
and SAML2.0. LDAP authentication supports the OpenLDAP and Active Directory 
directories. Twistlock Console can be configured as an SAML2.0 Service Provider. The 
SAML2.0 Identity Providers that have been successfully federated with the Twistlock 
Console are Okta, G Suite, Ping, Shibboleth and Azure Active Directory. Smart card 
authentication to the Twistlock Console requires configuring Twistlock with the 
smart card’s chain of trust and matching the smart card’s SubjectAlternativeName’s 
PrincipalName value to user’s corresponding Twistlock username. 

Twistlock supports group based authorization and defines the following roles:

Role Access Level

Administrator • Full read-write access to all Twistlock settings and data

Operator • Read-write access to all rules and data
• Read-only access to user and group management and role assignments

Defender Manager • Read-only access to all rules and data
• Can install / uninstall Twistlock Defenders
• Used for Automating Defender installs via Bearer Token or Basic Auth

Auditor • Read-only access to all Twistlock rules and data

DevOps User • Read-only access to vulnerability scan data.

Access User • Install personal certificates required for access to Defender protected 
nodes

CI User • Run the Continuous Integration plugin
• No Twistlock Console access

Group membership can be assigned within the Twistlock Console, as an SAML 2.0 role 
claim, or LDAP group membership value.

http://twistlock.com


Reference Architecture 19.07

23www.twistlock.com

Integration with the CI Pipeline
Overview
Engineering teams can integrate Twistlock vulnerability and compliance scanning 
capabilities into their development process. Twistlock provides a native Jenkins 
plugin, as well as a stand-alone command-line tool called twistcli, for integration 
with your continuous integration (CI) pipeline. 

Twistlock Integration with Single Node Jenkins or Other 
CI Server

TCP: 8083TCP: 8083

Twistlock CI integration enables automatic scans of your custom Docker images at 
build time. Scans can detect vulnerabilities and compliance issues before your images 
are pushed to the registry and deployed into production. Thresholds can be specified 
to fail builds of images that have issues that exceed a specified severity.

The results of the scans via Jenkins or twistcli are available in the Console.

http://twistlock.com


Reference Architecture 19.07

24www.twistlock.com

Twistlock Jenkins Plugin
The Twistlock Jenkins plugin is compatible with Jenkins version 1.58 or higher. 
Twistlock Jenkins plugin must be able to reach Twistlock Console over the network. 
The Twistlock plugin depends on two other Jenkins plugins: Static Analysis 
Utilities and Dashboard View.

Scan reports show detailed information for each vulnerability, including information 
that can assist with remediation (i.e which package versions fix the vulnerability). 
Trend charts show how the number of security issues has changed over time.

If your Jenkins server runs as a container, mount the docker socket from the host into 
the Jenkins container at runtime using:

 “-v /var/run/docker.sock:/var/run/docker.sock”. 

This enables the Twistlock plugin to run docker commands via the host’s Docker 
installation.

Twistlock Integration with other CI Servers
The Twistlock Command Line Interface, twistcli, allows for integration into most any 
other CI tools. Simply create a post-build step and use the return value to optionally 
fail a build based on thresholds for compliance and/or vulnerabilities. See this Support 
article for more details here.

http://twistlock.com
https://docs.twistlock.com/docs/latest/tools/twistcli_scan_images.html


Reference Architecture 19.07

25www.twistlock.com

Twistlock Registry and Serverless Repository Scanning
After you build your Docker images or Serverless functions, you need somewhere 
to store them. You could use an on-premises registry, a hosted solution, or some 
combination of both. Either way, you will want to continually scan these images 
against the latest available threat data. 

To scan a registry, Twistlock uses the registry’s APIs to list and pull the images to 
the local system. Twistlock then deconstructs and inventories each image, cross-
referencing the threat data from the Intelligence Stream to identify vulnerable 
packages. By default, registry images are scanned once per day, but the period is 
configurable. 

Twistlock must have the same network connectivity and credentials that would be 
required run docker pull. Firewalls must be configured correctly and the correct access 
credentials must be provided.

Twistlock supports Docker v1 and v2 registries, as well as the registries provided by 
Amazon, Google and Microsoft. For registries that implement the Catalog API, you can 
use wildcards to specify which repositories to scan - or you can leave the repository 
name or label blank and all repositories will be scanned. Twistlock also supports PCF 
Blobstores, the rough equivalent of a Docker container registry.

Finally, Twistlock supports webhook integration. When using Docker Hub and Docker 
Trusted Registry, Twistlock scans can be triggered as soon as an image is uploaded. 
For more information about setting up webhooks, see this support article.

Twistlock can also automatically watch your serverless repositories, much like the 
registry scanning capabilities Twistlock will continually monitor your serverless 
function repos for changes and scan them automatically, providing you with 
vulnerability and compliance reporting against the policies you define. For more 
information on this capability, see this support article.

http://twistlock.com
https://docs.twistlock.com/docs/latest/vulnerability_management/registry_scanning/webhooks.html#overview
https://docs.twistlock.com/docs/latest/vulnerability_management/serverless.html#capabilities


Reference Architecture 19.07

26www.twistlock.com

Container Secrets
Twistlock can be configured to retrieve secrets from your secrets store and inject 
them into the containers that need them. Twistlock supports a variety of secrets 
stores:

 ■ AWS Systems Parameter Store

 ■ AWS Secrets Manager

 ■ Azure Key Vault

 ■ CyberArk Enterprise Password Vault

 ■ Hashicorp Vault

Twistlock securely retrieves secrets from your designated secrets store and can 
inject them as either environment variables or files into the containers you designate. 
Twistlock provides a granular rule-driven system for defining how and where secrets 
are injected. To protect your secrets, configure your rules restrictively, using the 
principle of least-privilege access. For more information about configuring Twistlock 
to perform secrets injection, see this support article.

Retrieving Data From Twistlock
Twistlock can provide data from the assets it’s protecting in a number of ways. The 
mechanisms for providing data fall in to a few categories:

 ■ Event Driven Messaging

 ■ Log files

 ■ API Calls

http://twistlock.com
https://docs.twistlock.com/docs/latest/secrets/secrets_manager.html#overview


Reference Architecture 19.07

27www.twistlock.com

Event Driven Messaging
Twistlock provides comprehensive event driven alerting capabilities that allow 
customers to integrate Twistlock with assets they may already have investments in. 
Twistlock has integrations with the following:

 ■ Generic Webhook Provider

 ■ Email

 ■ Jira

 ■ Slack

 ■ PagerDuty

 ■ Google Cloud Security Command Center

 ■ AWS Security Hub

 ■ IBM Security Advisor

For more information see our Push Alerts documentation.

Kubernetes Audits
Twistlock can be configured as an audit sink for your Kubernetes logs, allowing you to 
use Twistlock to generate alerts based on events detected in the logs.

Log Files
Twistlock writes to RFC compliant syslog, this syslog data can be injected by any 
number of time series data solutions as well as common SIEM solutions. Twitlock 
offers a few layers of detail in our syslog messages which you can select to increase 
the verbosity of the messages. Twistlock recommends leaving the messages at their 
defaults Twistlock can also write to STDOUT as well as feed in to Prometheus. For 
more information see our logging documentation.

API Calls
As mentioned above, Twistlock provides a stable, well documented RESTful API for 
customer to leverage when automating or extracting data from the platform. For more 
information see our API documentation.

http://twistlock.com
https://docs.twistlock.com/docs/latest/configure/alerts_email_jira_slack.html
https://docs.twistlock.com/docs/latest/audit/syslog_integration.html#configuration
https://docs.twistlock.com/docs/latest/api/api_reference.html


Reference Architecture 19.07

www.twistlock.com

Trusted by 35% of the Fortune 100, Twistlock is the world’s first truly comprehensive 
cloud native security platform - providing holistic coverage across hosts, containers, 
and serverless in a single platform. Twistlock is cloud-native and API-enabled itself, 
protecting all your workloads regardless of what underlying compute technology 
powers them.

Twitter

Facebook

LinkedIn

Follow Twistlock

http://twistlock.com
https://twitter.com/twistlockteam
https://www.facebook.com/twistlockteam/
https://www.linkedin.com/company/9440582/
https://twitter.com/twistlockteam
https://www.facebook.com/twistlockteam/
https://www.linkedin.com/company/9440582/

	Twistlock Connectivity Flows

